Optimal Control of the Stokes Equations: A Priori Error Analysis for Finite Element Discretization with Postprocessing
نویسندگان
چکیده
An optimal control problem for 2d and 3d Stokes equations is investigated with pointwise control constraints. This paper is concerned with the discretization of the control by piecewise constant functions. The state and the adjoint state are discretized by finite element schemes. In the paper a postprocessing strategy is suggested, which allows for significant improvement of the accuracy.
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAnalysis of a finite volume element method for the Stokes problem
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projecti...
متن کاملA Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem
The pseudostress-velocity formulation of the stationary Stokes problem allows a Raviart-Thomas mixed finite element formulation with quasi-optimal convergence and some superconvergent reconstruction of the velocity. This local postprocessing gives rise to some averaging a posteriori error estimator with explicit constants for reliable error control. Standard residual-based explicit a posteriori...
متن کاملNon-matching Mortar Discretization Analysis for the Coupling Stokes-darcy Equations
Abstract. We consider the coupling across an interface of fluid and porous media flows with Beavers-JosephSaffman transmission conditions. Under an adequate choice of Lagrange multipliers on the interface we analyze inf-sup conditions and optimal a priori error estimates associated with the continuous and discrete formulations of this Stokes-Darcy system. We allow the meshes of the two regions ...
متن کاملFinite Element Error Analysis for State-constrained Optimal Control of the Stokes Equations
An optimal control problem for 2d and 3d Stokes equations is investigated with pointwise inequality constraints on the state and the control. The paper is concerned with the full discretization of the control problem allowing for different types of discretization of both the control and the state. For instance, piecewise linear and continuous approximations of the control are included in the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2006